3.362 \(\int \frac{\sqrt{c+d x^3}}{x^4 (a+b x^3)} \, dx\)

Optimal. Leaf size=115 \[ \frac{(2 b c-a d) \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{3 a^2 \sqrt{c}}-\frac{2 \sqrt{b} \sqrt{b c-a d} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 a^2}-\frac{\sqrt{c+d x^3}}{3 a x^3} \]

[Out]

-Sqrt[c + d*x^3]/(3*a*x^3) + ((2*b*c - a*d)*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(3*a^2*Sqrt[c]) - (2*Sqrt[b]*Sqr
t[b*c - a*d]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(3*a^2)

________________________________________________________________________________________

Rubi [A]  time = 0.124872, antiderivative size = 115, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {446, 99, 156, 63, 208} \[ \frac{(2 b c-a d) \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{3 a^2 \sqrt{c}}-\frac{2 \sqrt{b} \sqrt{b c-a d} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 a^2}-\frac{\sqrt{c+d x^3}}{3 a x^3} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*x^3]/(x^4*(a + b*x^3)),x]

[Out]

-Sqrt[c + d*x^3]/(3*a*x^3) + ((2*b*c - a*d)*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(3*a^2*Sqrt[c]) - (2*Sqrt[b]*Sqr
t[b*c - a*d]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(3*a^2)

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[1/((m + 1)*(b*e - a*f)), Int[(a +
b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + p + 2)*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{c+d x^3}}{x^4 \left (a+b x^3\right )} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{\sqrt{c+d x}}{x^2 (a+b x)} \, dx,x,x^3\right )\\ &=-\frac{\sqrt{c+d x^3}}{3 a x^3}+\frac{\operatorname{Subst}\left (\int \frac{\frac{1}{2} (-2 b c+a d)-\frac{b d x}{2}}{x (a+b x) \sqrt{c+d x}} \, dx,x,x^3\right )}{3 a}\\ &=-\frac{\sqrt{c+d x^3}}{3 a x^3}+\frac{(b (b c-a d)) \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,x^3\right )}{3 a^2}-\frac{(2 b c-a d) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{c+d x}} \, dx,x,x^3\right )}{6 a^2}\\ &=-\frac{\sqrt{c+d x^3}}{3 a x^3}+\frac{(2 b (b c-a d)) \operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d x^3}\right )}{3 a^2 d}-\frac{(2 b c-a d) \operatorname{Subst}\left (\int \frac{1}{-\frac{c}{d}+\frac{x^2}{d}} \, dx,x,\sqrt{c+d x^3}\right )}{3 a^2 d}\\ &=-\frac{\sqrt{c+d x^3}}{3 a x^3}+\frac{(2 b c-a d) \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{3 a^2 \sqrt{c}}-\frac{2 \sqrt{b} \sqrt{b c-a d} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 a^2}\\ \end{align*}

Mathematica [A]  time = 0.120621, size = 107, normalized size = 0.93 \[ \frac{\frac{(2 b c-a d) \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{\sqrt{c}}-2 \sqrt{b} \sqrt{b c-a d} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )-\frac{a \sqrt{c+d x^3}}{x^3}}{3 a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*x^3]/(x^4*(a + b*x^3)),x]

[Out]

(-((a*Sqrt[c + d*x^3])/x^3) + ((2*b*c - a*d)*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/Sqrt[c] - 2*Sqrt[b]*Sqrt[b*c -
a*d]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(3*a^2)

________________________________________________________________________________________

Maple [C]  time = 0.01, size = 518, normalized size = 4.5 \begin{align*}{\frac{{b}^{2}}{{a}^{2}} \left ({\frac{2}{3\,b}\sqrt{d{x}^{3}+c}}+{\frac{{\frac{i}{3}}\sqrt{2}}{b{d}^{2}}\sum _{{\it \_alpha}={\it RootOf} \left ( b{{\it \_Z}}^{3}+a \right ) }{\sqrt [3]{-{d}^{2}c}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-{d}^{2}c}} \right ) \left ( -3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i\sqrt{3} \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}d \left ( x+{\frac{1}{2\,d}\sqrt [3]{-{d}^{2}c}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}},{\frac{b}{2\,d \left ( ad-bc \right ) } \left ( 2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c} \left ( -{\frac{3}{2\,d}\sqrt [3]{-{d}^{2}c}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}} \right ) }+{\frac{1}{a} \left ( -{\frac{1}{3\,{x}^{3}}\sqrt{d{x}^{3}+c}}-{\frac{d}{3}{\it Artanh} \left ({\sqrt{d{x}^{3}+c}{\frac{1}{\sqrt{c}}}} \right ){\frac{1}{\sqrt{c}}}} \right ) }-{\frac{b}{{a}^{2}} \left ({\frac{2}{3}\sqrt{d{x}^{3}+c}}-{\frac{2}{3}{\it Artanh} \left ({\sqrt{d{x}^{3}+c}{\frac{1}{\sqrt{c}}}} \right ) \sqrt{c}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^3+c)^(1/2)/x^4/(b*x^3+a),x)

[Out]

b^2/a^2*(2/3*(d*x^3+c)^(1/2)/b+1/3*I/b/d^2*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(
1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1
/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2
)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^
(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1
/3))^(1/2),1/2*b/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^
2*c)^(2/3)*_alpha-3*c*d)/(a*d-b*c),(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)
^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b+a)))+1/a*(-1/3*(d*x^3+c)^(1/2)/x^3-1/3*d*arctanh((d*x^3+c)^(1/2)/c^(1/2))
/c^(1/2))-1/a^2*b*(2/3*(d*x^3+c)^(1/2)-2/3*arctanh((d*x^3+c)^(1/2)/c^(1/2))*c^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x^{3} + c}}{{\left (b x^{3} + a\right )} x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(1/2)/x^4/(b*x^3+a),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^3 + c)/((b*x^3 + a)*x^4), x)

________________________________________________________________________________________

Fricas [A]  time = 1.54522, size = 1160, normalized size = 10.09 \begin{align*} \left [\frac{2 \, \sqrt{b^{2} c - a b d} c x^{3} \log \left (\frac{b d x^{3} + 2 \, b c - a d - 2 \, \sqrt{d x^{3} + c} \sqrt{b^{2} c - a b d}}{b x^{3} + a}\right ) -{\left (2 \, b c - a d\right )} \sqrt{c} x^{3} \log \left (\frac{d x^{3} - 2 \, \sqrt{d x^{3} + c} \sqrt{c} + 2 \, c}{x^{3}}\right ) - 2 \, \sqrt{d x^{3} + c} a c}{6 \, a^{2} c x^{3}}, \frac{4 \, \sqrt{-b^{2} c + a b d} c x^{3} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-b^{2} c + a b d}}{b d x^{3} + b c}\right ) -{\left (2 \, b c - a d\right )} \sqrt{c} x^{3} \log \left (\frac{d x^{3} - 2 \, \sqrt{d x^{3} + c} \sqrt{c} + 2 \, c}{x^{3}}\right ) - 2 \, \sqrt{d x^{3} + c} a c}{6 \, a^{2} c x^{3}}, -\frac{{\left (2 \, b c - a d\right )} \sqrt{-c} x^{3} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{c}\right ) - \sqrt{b^{2} c - a b d} c x^{3} \log \left (\frac{b d x^{3} + 2 \, b c - a d - 2 \, \sqrt{d x^{3} + c} \sqrt{b^{2} c - a b d}}{b x^{3} + a}\right ) + \sqrt{d x^{3} + c} a c}{3 \, a^{2} c x^{3}}, \frac{2 \, \sqrt{-b^{2} c + a b d} c x^{3} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-b^{2} c + a b d}}{b d x^{3} + b c}\right ) -{\left (2 \, b c - a d\right )} \sqrt{-c} x^{3} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{c}\right ) - \sqrt{d x^{3} + c} a c}{3 \, a^{2} c x^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(1/2)/x^4/(b*x^3+a),x, algorithm="fricas")

[Out]

[1/6*(2*sqrt(b^2*c - a*b*d)*c*x^3*log((b*d*x^3 + 2*b*c - a*d - 2*sqrt(d*x^3 + c)*sqrt(b^2*c - a*b*d))/(b*x^3 +
 a)) - (2*b*c - a*d)*sqrt(c)*x^3*log((d*x^3 - 2*sqrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3) - 2*sqrt(d*x^3 + c)*a*c)/(
a^2*c*x^3), 1/6*(4*sqrt(-b^2*c + a*b*d)*c*x^3*arctan(sqrt(d*x^3 + c)*sqrt(-b^2*c + a*b*d)/(b*d*x^3 + b*c)) - (
2*b*c - a*d)*sqrt(c)*x^3*log((d*x^3 - 2*sqrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3) - 2*sqrt(d*x^3 + c)*a*c)/(a^2*c*x^
3), -1/3*((2*b*c - a*d)*sqrt(-c)*x^3*arctan(sqrt(d*x^3 + c)*sqrt(-c)/c) - sqrt(b^2*c - a*b*d)*c*x^3*log((b*d*x
^3 + 2*b*c - a*d - 2*sqrt(d*x^3 + c)*sqrt(b^2*c - a*b*d))/(b*x^3 + a)) + sqrt(d*x^3 + c)*a*c)/(a^2*c*x^3), 1/3
*(2*sqrt(-b^2*c + a*b*d)*c*x^3*arctan(sqrt(d*x^3 + c)*sqrt(-b^2*c + a*b*d)/(b*d*x^3 + b*c)) - (2*b*c - a*d)*sq
rt(-c)*x^3*arctan(sqrt(d*x^3 + c)*sqrt(-c)/c) - sqrt(d*x^3 + c)*a*c)/(a^2*c*x^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c + d x^{3}}}{x^{4} \left (a + b x^{3}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**3+c)**(1/2)/x**4/(b*x**3+a),x)

[Out]

Integral(sqrt(c + d*x**3)/(x**4*(a + b*x**3)), x)

________________________________________________________________________________________

Giac [A]  time = 1.10951, size = 163, normalized size = 1.42 \begin{align*} \frac{1}{3} \, d^{2}{\left (\frac{2 \,{\left (b^{2} c - a b d\right )} \arctan \left (\frac{\sqrt{d x^{3} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{\sqrt{-b^{2} c + a b d} a^{2} d^{2}} - \frac{{\left (2 \, b c - a d\right )} \arctan \left (\frac{\sqrt{d x^{3} + c}}{\sqrt{-c}}\right )}{a^{2} \sqrt{-c} d^{2}} - \frac{\sqrt{d x^{3} + c}}{a d^{2} x^{3}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c)^(1/2)/x^4/(b*x^3+a),x, algorithm="giac")

[Out]

1/3*d^2*(2*(b^2*c - a*b*d)*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*a^2*d^2) - (2*
b*c - a*d)*arctan(sqrt(d*x^3 + c)/sqrt(-c))/(a^2*sqrt(-c)*d^2) - sqrt(d*x^3 + c)/(a*d^2*x^3))